matlab拟合曲线并输出公式
如何用Matlab实现三维曲线的拟合,并求出曲线的函数表达式(方程)?
使用griddata函数,可进行三维拟合,并求出任意点处的值,之前用过求电流温度和电阻率的函数拟合如下rq=griddata(i,t,r,iq,tq) 。具体过程如下:D=[[1,6,9.2];[4,12,1.5];[7,4,2.3];[10,10,2.5];[13,2,11];[16,8,9];[0,0,386.1]]D =1.0000 6.0000 9.20004.0000 12.0000 1.50007.0000 4.0000 2.300010.0000 10.0000 2.500013.0000 2.0000 11.000016.0000 8.0000 9.00000 0 386.1000x=D(:,1);y=D(:,2);z=D(:,3);T=[x y x.*y x.*x y.*y ones(7,1)]\zT =-30.7039-87.50472.90420.62094.4429386.1000所以所求函数为 T(1)*x+T(2)*y+T(3).*x.*y+T(4)*x.^2+T(5)*y.^2+T(6)即z=-30.7039x--87.5047y+2.9042xy+0.6209x^2+ 4.4429y^2+386.1000
MATLAB将散点图和拟合曲线在用一个三维图中
如何用MATLAB将散点图和拟合曲线在用一个三维图中画出来?可以这样处理:
1、根据已知4组x、y、z的数据,按z=a1+a2*x+a3*y方程拟合其系数,
2、将x和y的最小值和最大值之间细分,求出z值。
3、根据这若干个数据点用plot3(x,y,z,'o')绘出散点图,plot3(x1,y1,z1,'r-')绘出连续的直线。
例如:
x=[。。;。。;。。;。。]; y=[。。;。。;。。;。。]; z=[。。;。。;。。;。。];
n=length(x);
X=[ones(n,1) x y];
y=z;
a = regress(y,X)
x1=x;y1=y;z1=a(1)+a(2)* x1 +a(3)*y1
plot3(x,y,z,'o',x1,y1,z1,'r-')
matlab画出的曲线怎么拟合函数
一、 单一变量的曲线逼近
Matlab有一个功能强大的曲线拟合工具箱
cftool ,使用方便,能实现多种类型的线性、非线
性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908
280.0447
296.204 311.5475]
》y=[5 10 15 20 25 30 35 40 45 50]
2、启动曲线拟合工具箱
》cftool
3、进入曲线拟合工具箱界面“Curve Fitting
tool”
(1)点击“Data”按钮,弹出“Data”窗口;
(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set
name”,然
后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数
据集的曲线图;
(3)点击“Fitting”按钮,弹出“Fitting”窗口;
(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data
set”下拉菜单
选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类
型有:
Custom
Equations:用户自定义的函数类型
Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) +
c*exp(d*x)
Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) +
b1*sin(x*w)
Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)
Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic
spline、shape-
preserving
Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree
~
Power:幂逼近,有2种类型,a*x^b 、a*x^b + c
Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic
~、4-5th
degree ~;此外,分子还包括constant型
Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)
Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x +
c1)
Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置:
——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改
待估计参数的上下限等参数;
——如果选Custom
Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear
Equations线性等式”和“General Equations构造等式”两种标签。
在本例中选Custom Equations,点击“New”按钮,选择“General
Equations”标签,输入函
数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。
(5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例:
general model:
f(x) = a*x*x+b*x
Coefficients (with 95% confidence bounds):
a = 0.009194 (0.009019, 0.00937)
b = 1.78e-011 (fixed at bound)
Goodness of fit:
SSE: 6.146
R-square: 0.997
Adjusted R-square: 0.997
RMSE: 0.8263
同时,也会在工具箱窗口中显示拟合曲线。
这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“
Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。
不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变
量只能有一个。对于混合型的曲线,例如 y = a*x + b/x ,工具箱的拟合效果并不好。
用MATLAB怎么实现曲线拟合?
MATLAB软件提供了基本的曲线拟合函数的命令.1 多项式函数拟合:a=polyfit(xdata,ydata,n)其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入.输出参数a为拟合多项式 的系数多项式在x处的值y可用下面程序计算.y=polyval(a,x)2 一般的曲线拟合:p=curvefit(‘Fun’,p0,xdata,ydata)其中Fun表示函数Fun(p,data)的M函数文件,p0表示函数的初值.curvefit()命令的求解问题形式是若要求解点x处的函数值可用程序f=Fun(p,x)计算.例如已知函数形式 ,并且已知数据点 要确定四个未知参数a,b,c,d.使用curvefit命令,数据输入 ;初值输 ;并且建立函数 的M文件(Fun.m).若定义 ,则输出又如引例的求解,MATLAB程序:t=[l:16]; %数据输人y=[ 4 6.4 8 8.4 9.28 9.5 9.7 9.86 10.2 10.32 10.42 10.5 10.55 10.58 10.6] ;plot(t,y,’o’) %画散点图p=polyfit(t,y,2) (二次多项式拟合)计算结果:p=-0.0445 1.0711 4.3252 %二次多项式的系数由此得到某化合物的浓度y与时间t的拟合函数。
上一篇:雷克沙和闪迪哪个好
下一篇:没有了