尊旭网 > 知识 >

吸收律

来源:尊旭网时间:2023-07-18 19:35:47编辑:阿旭
离散数学吸收律怎么理解

1、A∧(A∨B)=(A∨0)∧(A∨B)=A∨(0∧B)=A∨0=A

2、A∪(B∩C)=(A∪B)∩(A∪C)

3、(A∪B)∩C=(A∩C)∪(B∩C)

4、即x∈A∪B且x∈C

5、即(x∈A或x∈B)且x∈C

6、以第一个式子为例,左式=p∧x≤p,同时p≥p且p∨q≥p,故左式≥右式,得证。

7、(P ∨ 0) ∧ (P ∨ Q)=P ∨ (0 ∧ Q)=P ∨ 0=P

8、(P ∧ 1) ∨ (P ∧ Q)=P ∧ (1 ∨ Q)=P ∧ 1=P

9、这里的=号要理解为公式上的逻辑等价。

10、吸收律对相干逻辑、线性逻辑和亚结构逻辑不成立。

11、在亚结构逻辑情况下,在恒等式的定义对的自由变量之间没有一一对应。

吸收律公式

在抽象代数中,吸收律是连接一对二元运算的恒等式。

任何两个二元运算比如 $ 和 %,服从吸收律如果: a $ (a % b)=a % (a $ b)=a. 运算 $ 和 % 被称为对偶对。

逻辑的吸收律怎么推导出来的

1、1 逻辑的吸收律是可推导的。

2、2 这是因为逻辑的吸收律是由其他更基本的逻辑定律推导出来的,如分配律、结合律等。

3、3 例如,假设有两个命题P和Q,那么根据分配律,可以得到(P∧Q)∨P=(P∨P)∧(Q∨P)=P∧(Q∨P)。

4、接着,再根据结合律,可以将(Q∨P)与另一个命题R连接起来,即P∧(Q∨P)∨R=(P∨R)∧(Q∨P∨R)。

5、然后,再应用分配律,就可以得到(P∧R)∨(Q∧R)∨P=(P∨R)∧(Q∨R)。

6、这个式子就是逻辑的吸收律。

7、因此,逻辑的吸收律是可以推导出来的,而且是由其他更基本的逻辑定律推导而来的。

上一篇:鸭儿粑

下一篇:没有了

相关推荐

热门头条