谢明亮
七年级下册数学所有公式!在要多项式加减乘除的题
第一章:三角形的初步认识
主要性质:
(1) 三角形任何两边的和大于第三边。
(2) 三角形三个内角的和等于180°。三角形的一个外角等于的它不相邻的两个内角的和。
(3) 全等三角形的对应边相等,对应角相等。
(4) 有三边对应相等的两个三角形全等(简写成“边边边”或“SSS”);有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”);有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”);有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)
(5) 线段垂直平分线上的点到线段两端点的距离相等。角平分线上的点到角两边的距离相等。
第二章:图形和变换
主要性质
(1) 对称轴垂直平分连结两个对称点之间的线段,轴对称变换不改变图形的形状和大小。
(2) 平移变换不改变图形的形状、大小和方向,并且连接对应点的线段平行而且相等。
(3) 旋转变换不改变图形的大小和形状,并且对应点到旋转中心的距离都相等,对应点与旋转中心连线所成的角度都等于旋转的角度。
(4) 相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数。
第三章:事件的可能性
(1)在一定条件下必然发生的事件叫做必然事件;在一定条件下必然不会发生的事件叫做不可能事件;在一定条件下,可能发生也可能不发生的的事件称为不确定事件(或随机事件)
(2)在数学上,事件发生的可能性的大小也称为事件发生的概率.必然事件发生的概率为1或100%,不可能事件发生的概率为0,若用P表示不确定事件发生的概率,则0<P<1
第四章:
含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程,使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
由两个一次方程组成,且含有两个未知数的方程组,叫做二元一次方程组。同时满足二元一次方程组中各个方程的解,叫做二元一次方程组的解。
基本思路
二元一次方程 消元 一元一次方程
应用方程组解决实际问题的步骤
理解问题(审题,搞清已知和未知,分析数量关系)
制订计划(考虑如何根据等量关系设元,列出方程组)
执行计划(列出方程组并求解,得出答案)
回顾(检查和反思解题过秤,检验答案的正确性以及是否符合题意)
主要方法和技能
用代入法和加减法解二元一次方程组
应用二元一次方程组解决简单的实际问题
第五章
整数指数幂及其运算的基本法则
整式的乘法法则
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加
整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
第六章
1.分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。即
其中M是不等于零的整式。
2.分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
3.同分母的分式相加减,把分子相加减,分母不变。
4.同分母不相同的几个分式,化成分母相同的分式,叫做通分。经过通分,异分母分式的加减就转化成同分母分式的加减。
5.解分式方程必须验根.把求得的根代入原方程,或代入原方程两边所乘的公分母,使分式为零的根,叫做增根,增根必须舍去。七年级数学下期复习提纲:一、 概念知识1、 单项式:数字与字母的积,叫做单项式。2、 多项式:几个单项式的和,叫做多项式。3、 整式:单项式和多项式统称整式。4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。6、 余角:两个角的和为90度,这两个角叫做互为余角。7、 补角:两个角的和为180度,这两个角叫做互为补角。8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。9、 同位角:在“三线八角”中,位置相同的角,就是同位角。10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。18、全等图形:两个能够重合的图形称为全等图形。19、变量:变化的数量,就叫变量。20、自变量:在变化的量中主动发生变化的,变叫自变量。21、因变量:随着自变量变化而被动发生变化的量,叫因变量。22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。23、对称轴:轴对称图形中对折的直线叫做对称轴。24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)二、 计算能力(A) 整式的计算。1、 整式的加减去括号,合并同类项!2、 幂运算(七个公式)① 同底数幂相乘:底数不变,指数相加。 ②幂的乘方:底数不变,指数相乘。③积的乘方:等于每个因数乘方的积。 ④同指数幂相乘:指数不变,底数相乘。
人教版六年级下册数学基础训练37页第2题怎么做
人教版六年级下册数学基础训练答案:
1:体育用品有90个乒乓球,如果每两个装一盒,能正好装完吗?如果每五个装一盒,能正好装完吗?为什么?
90#2=45盒
90#5=18盒
答:如果每两个装一盒,能正好装完如果每五个装一盒,也能正好装完。因为90能整除五。
2:体育店有57个皮球,每三个装在一个盒子里,能正好装完吗?
57#3+19盒
答:能正好装完。
3:甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完?
10000#(115+135)=40分
答:40分钟可以打完。
4:五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?
13X14=192人
答:五年级参加植树的人至少有192人.
下面几道题目虽然属于应用题,但跟方程有关.我都是用方程解答的.
5:两辆汽车从一个地方相背而行.一车每小时行31千米,一车每小时行44千米.经过多少分钟后两车相距300千米?
方程:
解:两车X时后相遇.
31X+44X=300
75X=300
X=4
4小时=240分钟
答:经过240分钟后两车相距300千米.
6:两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?
解:设X天后挖通隧道
3X+4X=119
7X=119
X=17
答:经过17天挖通隧道.
7:学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?
解:设舞蹈队有X人
6X+X=140
7X=140
X=20人
答:舞蹈队有20人.
从这里开始不是方程题了.
8:兄弟两个人同时从家里到体育馆,路长1300米.哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?
1300X2=2600米 2600#(180+80)
=2600#260
=10分
答:这时哥哥走了10分钟.
9::六一儿童节,王老师买了360块饼干,480块糖,400个水果,制作精美小礼包,分给小朋友作为礼物,至多可做几个小礼包?
360+480+400=1240个
答:至多可做1240个小礼包.
10:淘气买了40个气球,请同学来家比吹气球.为了能把气球平分,淘气应该请几个同学来比吹气球?淘气不参加.
40#2=20人 40#4=10人 40#5=8人
40#8=5人 40#@0=4人 40#20=2人
答:请同学的方法有6种,分别是:20人,10人,5人,8人,4人,2人.
11:一块梯形的玉米地,上底15米,下底24米,高18米.每平方米平均种玉米9株,这块地一共可种多少株玉米?
(15+24)X18#2=351平方米
351X9=3195株
答:这块地可种玉米3159株.
12:某班学生人数在100人以内,列队时,每排5人,4人,3人都刚好多一人,这班有多少人?
5X4X3=60人 60+1=61人
答:这班有61人.
13:王月有一盒巧克力糖,每次7粒,5粒,3粒的数都余1粒,这盒巧克力糖至少有多少粒?
7X5X3=105粒 105+1=106粒
答:这盒巧克力糖至少有106粒.
14:晨光小区有一段长15米,宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖,请你算一算:需要几块这样的方砖?如果每块方砖3元,那么铺这段甬道需要多少元?
15米=150分米 1.2米=12分米 30厘米=3分米
150X12=1800平方分米 3X3=9平方分米
1800#9=200块 200X3=600元
答:需要200块这样的方砖,需要600元.
15:有两块面积相等的平行四边形实验田,一块底边长70米,高45米,另一块底边长90米,高是多少米?
70X45=3150平方米 3150#90=35米
答:高是35米.
16:一批钢管叠成一堆,最下层有10根,每上1层少放1根,最上1层放了5根.这批钢管有多少根?
10-5+1=6层 (10+5)X6#2
=15X6#2
=90#2
=45根
答:这批钢管有45根.
等等————还有————
1.东高村要修建一个长方体的蓄水池,计划能蓄水720吨。已知水池的长是18米,宽是8米,深至少是多少米?(1立方米的水重1吨。)(用方程解答)
2.一个长方体游泳池,长50米,宽25米,池内原来水深1.2米。如果用水泵向外排水,每分钟排水2.5立方米,需要多少小时排完?
3.一个长方体的汽油桶,底面积是16平方分米,高是6分米,如果1升汽油中0.74千克,这个有同可以装多少千克汽油?
4.用2100个棱长1厘米的正方体堆成一个长方体,它的高是1分米,长和宽都大于高。它的长和宽各是多少厘米?
第一题:
解:深至少是X米,
18*8X=720
144X=720
X=5
答:深至少是5米。
第二题:
50*25*1.2=1500(立方米)
1500/25=600(分钟)
600分钟=10小时
答:需要10小时。
第三题:
16*6=96立方米=96升
96*0.74=71.04千克
答:这个油桶可以装71.04千克。
第四题:
1分米=10厘米
2100/10=210(厘米)
210/70=3(厘米)或者 210/30=70(厘米)
答:长为70厘米;宽为3厘米;或者长为30;宽为7厘米。
第5题:
有一个正方体,边长为2厘米,求这个正方体的表面积?
答案:2*2*6=24(平方厘米)
第6题:
有一个长方体,长2厘米,高2厘米,宽1厘米,求表面积?
答案:(2*2+2*1+2*1)*2=16(平方厘米)
第7题:一块长方体的木板,长2米,宽5米,厚8米,它的表面积是多少平方米?体积是多少立方米?
答案:表面积:(2*5+2*8+5*8)*2=132(平方米)
体积:2*5*8=80(立方米)
第8道:一个正方体油桶的棱长0.8米,它的容积是多少升?做这个油桶至收用铁皮多少平方分米?
0.8*0.8*0.8=0.512(平方米)=512(升)
0.8*0.8*6=3.084(平方米)=348(平方分米)
第9道:有三根木棒,分别长12厘米,44厘米,56厘米。要把他们都截成同样长的小棒,不许剩余,每根小棒最长能有多少厘米?
答案:这里求的是12,44,56,的最大的公约数!你自己算吧!
第10题:一个无盖的正方体鱼缸,棱长50厘米,至少需要多大玻璃?
答案:50*50*5=12500(平方厘米)
第11题:一包糖果,分8个人或10个人,都能正好分完,这包糖果至少有多少块?
答案:这里是求8和10的最小公倍数。
第12题:有一箱牛奶,分5个人或分7个人,都剩一瓶牛奶,这箱牛奶至少有多少瓶?
答案:这里求的是5和7的最小公倍数在+上1
第13题:长方形地长40米、宽45米,和另一块底为75米的平行四边形的面积相等,这块平行四边形地的高多少米?
答案:40*45=1800(平方米)
1800/75=24(米)
第14题:三角形的面积是3.4平方米,和它等地等高的平行四边形面积是多少?
答案:3.4*2=6.8(平方米)
第15题:一个长方体水池长8.5米,宽4米,深1.5米,这个水池占底面积是多少平方米?
答案:8.5*4=34(平方米)
第16题:一个长方体木箱,长12分米,宽8分米,高6.5分米,如果在它的围标涂上油漆,涂油漆的面积有多少平方分米?
答案:12*8+(12*6.5+8*6.5)*2=356(平方分米)
第17题:梯形的上底是5米,下底12米,高8米,它的面积是多少?
答案:(5+12)*8=68(平方米)
第18题:做长方体的箱子,长0.8米,宽.6米,高0.4米。做这个箱子至少要多少材料?
答案:(0.9*0.6+0.6*0.4+0.9*0.4)*2=228(平方米)
第19题:正方体纸盒棱长0.6米,做一个纸盒至少要用多少材料?
答案:0.6*0.6*6=2.16(平方米)
第20题:小明里学校有1000米,他每分钟走100米,要多少小时才能回到学校?
答案:1000/100=10(分钟)=1/6小时21. 两个数的最大公因数是30,他们的最小公倍数是180,已知其中一个数为180,求另一数?
答案:30
22.从运动场的一端到另一端全长96米,原来从一端起到另一端每隔4米插一面小红旗,现在要改成每隔6米插一面小红旗,求不拔出来的小红旗有多少面?
答案:因为运动场全长96 每隔4米 有1面红旗 可知一共有96除4=24面 又因为改成每6米一面 3成4=12 2成6=12 所以每四面红旗拔掉2根24除2=12面
23.有25个桃子,75个橘子,分给若干名小朋友,要求每人分得的桃子,橘子数相等,那么最多可非给多少个小朋友?每个小朋友分得桃子多少个?橘子多少个?
答案:(25,75)=25个(25是25和75的最大公约数)
25/25=1个
75/25=3个
最多可分给25个小朋友,每个小朋友分得桃子1个,橘子3个。
24.兰兰的父母在外地工作,她住在奶奶家。妈妈每6天开看她一次,爸爸路远,每9天才能来看她一次。请你想一想,至少多少天爸爸,妈妈能同时来看她?两个月内他们全家能团聚几次?
答案:(6,9)=18天(18是6和9的最小公倍数)
60/18=3次......6天
至少18天爸爸,妈妈能同时来看她,两个月内他们全家能团聚3次
25.路车每6分钟发一次车,15路每8分钟发一次车,9路车每12分钟发一次车,现在三个路的公共汽车同时从起点出发,至少在过多少分钟三个路的车又同时发车。
答案:6=2*3
8=2*2*2
12=2*3*2
3*2*2*2=24
26.长72分米,宽48分米为最大公因数是24分米裁成面积最大的正方形桌布边长为2米4分米
答案:(72÷24)×(48÷24)=3×2=6
可以裁6块.
27.阿姨今天给月季和君子兰同时浇了水,月季每4天浇一次水,君子兰每6天浇一次水 ,至少多少天以后给这两种花同时浇水?
答案;求4和6的最小公倍数,等于24天
28. 有饼30块,橙36个,分给若干个儿童,每人所得的相等,最多可分给儿童多少人?
答案:求30和36的最大公约数,等于6
29.上米50公斤,中米60公斤,下米90公斤,分别装成重量相等的若干袋,各种米恰好装完,每袋的重量最多是多少公斤?
答案:求50.60和90的最大公约数,等于10
30.用24朵红花.36朵黄花和48朵紫花作成花束,要使花束里有同样多的花。这些花最多能做多少花束?
答案:求24.36和48的最大公约数,等于12
31.有一个长方体,宽是高的3倍,宽与高的长度和等于长。现将它横切一刀,再竖切一刀,得到了4个小长方体,表面积增加了200平方厘米。原来长方体的体积是多少?
答案:设高为a,宽为3a,长为4a
那么横切之后,表面积增加2*3a*4a
竖切之后,表面积增加2*a*3a
24a^2+6a^2=200
a=(20/3)^0.5
体积v=12a^3=160/3*(15)^0.5
32.一只无盖的长方形鱼缸,长 0.4米,宽 0.25米,深 0.3米,做这只鱼缸至少要用玻璃多少平方米?
答案:0.4×0.25+2×0.25×0.3+0.4×0.3
=0.1+0.15+0.24
=0.49㎡
33.用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?
答案:36÷12=3㎝
6×3×3
=54平方厘米
34.一个底面是正方形的长方形,侧面展开恰好是正方形,长方体的高为8分米,它的体积。
答案:
长方体的高=底面周长=8分米
长方体底面边长=8÷4=2(分米)
体积=底面积×高=2×2×8=32(立方分米)
数学万能公式是什么?
数学上有一种思想叫化归,就是把复杂的都化为简单来计算。
在平面上,对于多变形都可以化为三角形的计算公式,而三角形的计算公式最本质的面积公式是正弦定理。
其次就是圆了,圆面积的本质上是一条半径扫过一周后形成的区间大小。所以圆面积лr^2的得来可以这样理解:半径的中点绕圆心一周得到的周长。为什么这么说呢?可以用一个物理原理来解释:一个圆盘的质量是体积和密度的积。设高度和密度都是单位1,半径的质量为r,所有半径质量的和,半经的个数为半径质点(位于其中点处)绕圆心的周长数。这样就可以得到原面积为2лr*(r/2)=лr^2
根据这样的原理扇形面积可以同样得到:半径质点绕圆心转一定角度得到的和。
有了以上的概念,那么求任意旋转体的表面积和体积就很简单了。
表面积:母线的质心绕一周得到和。
体积:旋转面的质心绕轴得到。
数学上有个公式叫万能公式
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
注意:上面的是从百度知道复制来的。
初中数学用的所有万能公式都有哪些
万能公式包括三角函数、反三角函数等。万能公式,可以把所有三角函数都化成只有tan(a/2)的多项式。将sinα、cosα、tanα代换成含有tan(α/2)的式子,这种代换称为万能置换的代换公式。初中常用的万能公式:1、sinα=[2tan(α/2)]/{1+[tan(α/2)]^2} 2、cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2} 3、tanα=[2tan(α/2)]/{1-[tan(α/2)]^2} 将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换公式。扩展资料:万能公式,可以把所有三角函数都化成只有tan(a/2)的多项式之类的。用了万能公式之后,所有的三角函数都用tan(a/2)来表示,为方便起见可以用字母t来代替,这样一个三角函数的式子成了一个含t的代数式,可以用代数的知识来解。万能公式,架起了三角与代数间的桥梁。具体作用含有以下4点:1、将角统一为α/2;2、将函数名称统一为tan;3、任意实数都可以表示为tan(α/2)的形式(除特殊),可以用正切函数换元;4、在某些积分中,可以将含有三角函数的积分变为有理分式的积分。参考资料来源:百度百科-万能公式
小学一至六年级数学知识点
小学数学知识点总结
一年级上册
1、数一数(1~10)
2、比一比(多少、长短、高矮、)
3、1~5的认识和加减法(比大小、第几、几和几、加法、减法、0的认识)
4、认识物体和图形(长方体、正方体、圆柱、球、长方形、正方形、三角形、圆)
5、分类
6、6~10的认识和加减法(连加、连减、加减混合)
7、11~20个数的认识(数位的认识)
8、认识钟表(整时、半时)
9、20以内的进位加法 (凑十、9、8、7、6加几,5、4、3、2加几)
10、总复习
一年级下册
1、位置(上下、左右、前后、位置)
2、20以内的退位加法
3、图形的拼组
4、100以内数的认识(数数、数的组成,读数、写数,数的顺序、比较大小、整十数加一位数及相应的减法)
5、认识人民币(简单的计算)
6、100以内的加法和减法(一)(1、整十数加减整十数2、两位数加一位数和整十数3、两位数减一位数和整十数)
7、认识时间
8、找规律
9、统计(条形统计图)
10、总复习
二年级上册
1、长度单位
2、100以内的加法和减法(二)(1、两位数加两位数、不进位加、进位加2、两位数减两位数、不退位减、退位减3、连加、连减和加减混合、加减混合、加减估算)
3、角的初步认识
4、表内乘法(一)(1、乘法的初步认识2、2~6的乘法口诀)
5、观察物体
6、表内乘法(二)(7、8、9的乘法口诀)
7、统计
8、数学广角
9、总复习
二年级下册
1、解决问题
2、表内除法(一)(1、除法的初步认识、平均分、除法2、用2~6的乘法口诀求商)
3、图形与转换(锐角和钝角、平移和旋转)
4、表内除法(二)(用7、8、9的乘法口诀求商、解决问题)
5、万以内数的认识(1000以内数的认识、10000以内数的认识、整百整千数的加减法)
6、克和千克
7、万以内的加法和减法(一)
8、统计
9、找规律
10、总复习
三年级上册
1、测量(毫米、分米的认识,千米的认识,吨的认识)
2、万以内的加法和减法(二)(1、加法,2、减法3、加减法的验算)
3、四边形(四边形、平行四边形、周长、长方形和正方形的周长、估计)
4、有余数的除法
5、时、分、秒(秒的认识、时间的计算)
6、多位数乘一位数(1、口算乘法,2、笔算乘法)
7、分数的初步认识(1、分数的初步认识,2、分数的简单计算)
8、可能性
9、数学广角
10、总复习
三年级下册
1、位置和方向
2、除数是一位数的除法(1、口算除法,2、笔算乘法)
3、统计(1、简单的数据分析,2、平均数)
4、年、月、日(年月日、24小时计时法)
5、两位数乘两位数(1、口算乘法,2、笔算乘法)
6、面积(面积和面积单位、长方形和正方形面积的计算、面积单位间的进率、公顷与平方千米)
7、小数的初步认识(认识小数、简单的小数加减法)
8、解决问题
9、数学广角
10、总复习
四年级上册
1、大数的认识(亿以内数的认识、数的产生、亿以上数的认识、计算工具的认识、用计算器计算)
2、角的度量(直线、射线和角,角的度量、角的分类、画角)
3、三位数乘两位数(1、口算乘法,2笔算乘法)
4、平行四边形和梯形(垂直与平行、平行四边形与梯形)
5、除数是两位数的除法(1、口算除法,2、笔算除法)
6、统计
7、数学广角(烙饼问题)
8、总复习
四年级下册
1、四则运算
2、位置和方向
3、运算定律与简便计算(1、加法运算定律,2、乘法运算定律,3、简便计算)
4、小数的意义和性质(1、小数的意义和读写法,2、小数的性质和大小比较,3、生活中的小数,4求一个小数的近似数)
5、三角形(三角形的特性、三角形的分类、三角形的内角和、图形的拼组)
6、小数的加法和减法
7、统计
8、数学广角
9、总复习
五年级上册
1、小数乘法(小数乘整数、小数乘小数、积的近似数,连乘、乘加、乘减,整数乘法定律推广到小数)
2、小数除法(小数除以整数、一个数除以小数、商的近似数、循环小数、用计算器探索规律、解决问题)
3、观察物体
4、简易方程(1、用字母表示数,1、解建议方程)
5、多边形的面积(平行四边形的面积、三角形的面积、梯形的面积、组合图形的面积)
6、统计与可能性
7、数学广角
8、总复习
五年级下册
1、图形的变换(轴对称、旋转、欣赏设计)
2、因数与倍数(1、因数和倍数,2、2、5、3倍数的特征,指数和和数)
3、长方体和正方体(1、长方体和正方体的认识,2、长方体和正方体的表面积,3、长方体和正方体的体积、体积单位间的进率、容积和容积单位)
4、分数的意义和性质(1、分数的意义<分数的产生\分数的意义\分数与除法>,2、真分数和假分数,3、分数的基本性质,4、约分,5、通分,6、分数和小数的互化)
5、分数的加法和减法(1、同分母分数加减法,2、异分母分数加减法,3、分数加减混合运算)
6、统计
7、数学广角
8、总复习
六年级上册
1、位置
2、分数的乘法(1、分数乘法,2、解决问题,3、倒数的认识)
3、分数的除法(1、分数的除法,2、解决问题,3、比和比的应用)
4、圆(1、认识圆,2、圆的周长,3、圆的面积)
5、百分数(1、百分数的意义和写法,2、百分数和分数、小数的互化,3、用百分数解决问题、折扣、纳税、合理存款)
6、统计
7、数学广角
8、总复习
六年级下册
1、负数
2、圆柱与圆锥(1、圆柱,2、圆锥)
3、比例(1、比例的意义和基本性质,2、正比例和反比例的意义3、比例的应用)
4、统计
5、数学广角
6、整理和复习(1、数和代数、数的运算、式与方程、常见的量、比和比例,2、空间与图形、3、统计与可能性,4、综合应用)以上回答你满意么?
小学一至六年级数学重点
加法,减法,除法,乘法,整数混合运算,小数,分数,方程,体积,统计,图形,正方形的认识,长方形的认识,梯形,三角形,圆形,圆周率,分数混合运算,小数混合运算,表面积,面积,数的认识
小学数学公式:
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
上一篇:谢明皓
下一篇:没有了