尊旭网 > 知识 >

标准差和方差的区别

来源:尊旭网时间:2024-02-25 13:45:44编辑:阿旭

方差标准差是什么?

标准差也称为均方差,是反映一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。方差是各个数据与其算术平均数的离差平方和的平均数。由于方差的计量单位和量纲不便于从经济意义上进行解释,所以实际的统计工作中多用标准差来反映统计数据的差异程度。方差和标准差的计算方法包括简单平均法和加权平均法。简单平均法即将过去各数据之和除以数据总点数以求得算术平均数作为预测值;加权平均法即利用过去若干个按照发生时间顺序排列起来的同一变量的观测值,并以时间顺序数为权数计算出观测值的加权算术平均数,以作为预测未来期间该变量的预测值。

方差与标准差

标准差(StandardDeviation),也称均方差(meansquareerror),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。方差是各个数据与平均数之差的平方的平均数。公式:1、方差s=[(x1-x)^2+(x2-x)^2+(xn-x)^2]/n(x为平均数)2、标准差=方差的算术平方根它们的意义:1、方差的意义在于反映了一组数据与其平均值的偏离程度;2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。


我们可以代入期望的数学表达形式。比如连续随机变量:




Var(X)=E[(X−μ)2]=∫+∞−∞(x−μ)2f(x)dx





方差概念背后的逻辑很简单。一个取值与期望值的“距离”用两者差的平方表示。该平方值表示取值与分布中心的偏差程度。平方的最小取值为0。当取值与期望值相同时,此时不离散,平方为0,即“距离”最小;当随机变量偏离期望值时,平方增大。由于取值是随机的,不同取值的概率不同,我们根据概率对该平方进行加权平均,也就获得整体的离散程度——方差。





方差的平方根称为标准差(standard deviation, 简写std)。我们常用σ表示标准差


σ=Var(X)−−−−−−√


标准差也表示分布的离散程度。





正态分布的方差


根据上面的定义,可以算出正态分布


E(X)=1σ2π−−√∫+∞−∞xe−(x−μ)2/2σ2dx


的方差为


Var(X)=σ2


正态分布的标准差正等于正态分布中的参数σ。这正是我们使用字母σ来表示标准差的原因!


方差和标准差的区别

方差和标准差的区别如下:1、概念不同。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数;标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根。2、样本不同。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。3、对于数据的表现不同。真正能反映稳定性的是标准差,因为它的单位和数据的单位是一样的,而方差的单位是数据单位的平方,所以方差有点夸大波动的情况。4、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量,用来度量随机变量和其数学期望(即均值)之间的偏离程度。标准差在概率统计中常做统计分布程度上的测量,反映组内个体之间的离散程度,平均数相同的两组数据,标准差未必相同。

方差与标准差的区别

方差是实际值与期望值之差平方的平均值,而标准差是方差平方根。
方差和标准差:

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。

定义
设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。

由方差的定义可以得到以下常用计算公式:
D(X)=E(X^2)-[E(X)]^2

方差的几个重要性质(设一下各个方差均存在)。
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=c^2D(X)。
(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。


标准差(Standard Deviation)

各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数

标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。


方差和标准差之间有什么关系?

标准差是方差的算术平方根,标准差用s表示,方差是标准差的平方,方差用s^2表示,光看它的表示方法就可以知道二者的关系。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。 概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。 在许多实际问题中,研究方差即偏离程度有着重要意义。均值和方差的关系:均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8。显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。

标准差和方差的关系是什么?

标准差和方差的关系:统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根。标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大。一个较小的标准差,代表这些数值较接近平均值。

上一篇:so2

下一篇:没有了

相关推荐

热门头条