光辉海棠
海棠花的树干皮脱落了怎么办
海棠喜阳光,不耐阴,对严寒的气候有较强的适应性,其耐干旱力也很强。多数种类在高燥的向阳地带最宜生长,有些种类还能耐一定程度的盐碱地。喜在土层深厚、肥沃、PH5.5~PH7.0微酸性至中性的壤土中生长。海棠萌蘖力强。物候期,随纬度、海拔、种类不同而有差异。
海棠一般多行地栽,也可作桩景盆栽。栽植时间以早春萌芽前或初冬落叶后为宜,保持苗木完整的根系是栽植成活的关键之一,一般大苗要带土球。栽后要加强扶育管理、施肥、松土。在落叶后至早春萌芽前修剪,把枯弱枝、病虫枝剪除,以保持树冠疏散、通风透光。遇春旱时,要行灌溉。并注意防治金龟子、卷叶虫、蚜虫、袋蛾和红蜘蛛等害虫,以及腐烂病、赤星病等病害。
繁栽要点
嫁接、压条、扦插、分株、播种繁殖。春季萌芽前或秋季7月-9月间嫁接。春季萌芽前或秋冬落叶后分株繁殖。春季压条和根插。春季播种前种子须经30天-100天低温层积催芽处理。苗木栽植后要经常保持土壤疏松肥沃,每年秋季可在根际培以塘泥或肥土。春季进行一次修剪,剪除枯弱枝条,保持树形疏散,通风透光。
一般多行地栽,但也可制作桩景实行盆栽。栽植时期以早春萌芽前或初冬落叶后为宜。苗木出圃时,保持苗木完整的根系是栽植成活的关键之一。一般栽植的大苗要带土球,小苗要根据情况留宿土。
苗木栽植后要加强抚育管理,经常保持土壤疏松肥沃。每年秋、冬季可在根际处换培一批塘泥或肥土。在落叶后至早春萌芽前进行一次修剪,把枯弱枝、病虫枝剪除,以保持树冠疏散,通风透光。为促进植株开花旺盛,要把徒长枝实行短截,以减少发芽的养分消耗,使所留的腋芽均可获较多营养物质,形成较多的开花结果枝。结果枝、中间枝则不必修剪。在生长期间,如能及时进行摘心,早期限制营养生长,则效果更为显著。凡盆栽的桩景更应如此控制。
遇春旱时,要进行1-2次灌溉,并注意防治金龟子、卷叶虫、蚜虫、袋蛾和红蜘蛛等害虫,以及腐烂病、赤星病等。
桩景盆栽,取材于野生苍老的树桩,在春季未萌芽前采掘。有些主根深长的种类,在起掘后要及时剪除过长主根。树桩要带好宿土,护根保湿,如作长途运输,更要特别注意根部保湿,防止根须失水而影响成活。经过1-2年的养胚,待树桩初步成型后,可在清明前上盆。栽培桩景应选用浅盆。初栽时根部要多壅一些泥土,以后再逐步提根,配以拳石,便成具有山林野趣的海棠桩景了。
新上盆的桩景,要遮荫一个时期后,才可转入正常管理。为使桩景花繁果多,水肥管理应该加强。花前要追施1-2次磷氮混合肥;花后每隔半个月追施1次稀薄的磷钾肥,以促使果实丰满,减少落果。
每年春季开花1次的海棠花,如采用降温、减水、遮光等方法,能使它在当年的秋季再次开花。具体方法:7月上旬把盆栽的海棠花树移到避雨的阴凉处进行降温,减少光照,控制浇水。浇水务要徐徐减少,减至使植株叶片发黄自行脱落为止,以促使其休眠。尔后继续少量浇水,以维持生命和不萌发新芽为度。这样经过35-45天的休眠期,再将植株置于全光照下,浇透水、加施液肥,使之苏醒萌发新芽(叶芽花芽并生。再经过5-7天,就能见到鲜艳夺目的海棠花。
另外,还可利用其芽苞对温度敏感的习性,在隆冬采用加温催花的方法,将盆栽海棠桩景移入温室向阳处,浇透水,加施液肥,以后每天在植株枝干上适当喷水,保持室温在20-25℃,经过30-40天后,也能开花,可供元旦或春节摆设观赏用。水养大枝切花,也可在温室内促成。可在整个冬季分批水养,随开随用。
注意事项
1、浇水和施肥。浇水以盆土保持湿润为宜。干旱与盛夏天气还需对叶面和地面进行喷水,提高空气湿度有利于生长。忌盆内积水与淋雨,否则易烂根。冬季,盆土以稍偏干为好,每隔7天用清水喷洒叶片与环境,这样既增加湿度又能使叶片清洁。生长期间约10天施1次稀饼肥水;在孕蕾期追施速效的磷肥。施肥时注意,肥液勿溅到叶片上;开花期及冬、夏两季不宜施肥。
2、光照与温度。竹节海棠的生长适宜的温度为18~20℃,具有通风良好且有散射光的环境。高温季节需采取遮荫、通风、喷水等措施;冬天室温保持10℃以上为好,可置于阳光充足处。家庭莳养时,在生长季节每周要放到室外散射光下1~2次,冬季应放在向阳避风处。
3、绑扎与翻盆。由于竹节海棠植株较高大,需要用细竹等物设支架扶枝,以防倒伏。同时,每年春天需翻盆、换土、修枝,将弱枝、重叠枝、残根剪掉。对已开花2~3年,过高的植株要实施短截,仅留茎部6~10厘米,让其重新萌发新枝。
新栽的海棠花注意保水、通风和保持散射光照。
树干被砍后,断面上能看到的原圆圈代表什么
那叫年轮树的年轮如今已成为科学家研究的一个重要领域。通过年轮,人们不仅可以测定许多事物发生的年代,测知过去发生的地震、火山爆发和气候变化,而且还可以推断未来。美国新墨西哥州的印第安人村庄,17世纪的一幅油画,中世纪俄国城市的街道……它们之间似乎风马牛不相及,可是现在它们正在被一个新的科学研究领域联系起来。这个领域就是对树木年轮的研究。过去真正注意年轮的只有进行雕刻和制作木器的手工艺人,但是人类的天赋、先进的分析以及命运之神的青睐,使年轮成为人类学乃至环境保护学等许多学科研究的对象。
年轮研究的起源
木匠从久远的时代起,就知道树干里面有年轮,有了年轮,木材上才出现了纹理。据我们所知,亚里士多德的同事就曾提到过年轮,不过到达·芬奇时才第一次提出年轮是每年增加一圈的。今天已经众所周知:春回大地,万象更新,紧挨着树皮里面的细胞开始分裂;分裂后的细胞大而壁厚,颜色鲜嫩,科学家称之为早期木;以后细胞生长减慢,壁更厚,体积缩小,颜色变深,这被称为后期木,树干里的深色年轮就是由后期木形成的。在这以后,树又进入冬季休眠时期,周而复始,循环不已。这样,许多种树的主干里便生成一圈又一圈深浅相间的环,每一环就是一年增长的部分。这种年轮在针叶树中最显著,在大多数温带落叶树中不明显,而许多热带树中则根本没有。
树是活档案,树干里的年轮就是记录。它不仅说明树木本身的年龄,还能说明每年的降水量和温度变化。年轮上可能还记录了森林大火、早期霜冻以及从周围环境中吸取的化学成分。因此,只要我们知道了如何揭示树的秘密,它就会向我们诉说从它出世起,周围发生的大量事情。树可以告诉我们有文字记载以前发生过的事情,还可以告诉我们有关未来的事情。树中关于气象的记录可以帮助我们了解促成气象的那些自然力量,而这反过来又可帮助我们预测未来。
年轮形成的原因
“年轮系指茎的横切面上所见一年内木材和树皮的生长层而言。”这是1957年国际木材解剖学家协会所发表的《木材解剖学名词术语》中,有关“年轮“这个名词的定义。至于年轮是怎样形成的,这首先要从维管形成层的结构及其活动规律谈起。
维管形成层(或称形成层)是由原形成层发展而来的一种具有无限分生能力的次生分生组织。在植物的一生中,它不断向外产生次生韧皮部,向内产生次生木质部。
形成层由纺锤状原始细胞和射线原始细胞所组成。轴向伸长的纺锤状原始细胞,两端呈楔形,在横切面上多成长方形,切向宽大于径向宽,细胞的长度比宽度大数倍。
由纺锤状原始细胞衍生出次生木质部和次生韧皮部的轴向系统。射线原始细胞的体积较小,几乎成等径或稍长。这类原始细胞衍生次生木质部与韧皮部的径向系统。
上述两类原始细胞虽然在外部形态上差别较大,但其超微结构基本相同。在形成层的活动期间,原始细胞中间具1—2个大液泡,周围的细胞质中富含核糖体与高尔基体,以及发育良好的内质网等。休眠期的形成层原始细胞中,液泡变小,数目增多,高尔基体小泡及内质网也相应减少,细胞中还出现了较多的蛋白质体和油滴,这些储藏物质往往在翌年生长季开始时被利用。
木本植物根或茎的径向增粗,主要是通过纺锤状原始细胞平周分裂的结果,这种有丝分裂的进程较慢,如在松柏类植物中,每分裂一次需4一6天(茎的顶端分生组织细胞只需8—18小时)。当一个纺锤状原始细胞平周分裂成两个子细胞时,其中一个衍生为木质部母细胞(或称木质部原始细胞),或者衍生成韧皮部母细胞(或称韧皮部原始细胞)。另一个仍保持纺锤状原始细胞分生状态。在形成层活跃期间,有的细胞已经分裂或正在分裂,有的尚处于分生组织状态,这样形成层就成了一个相当宽而尚未分化的细胞区。在这个区域中,有一层真正的形成层原始细胞,同时还包括未分化的衍生细胞。由于从细胞形态上难以区分上述各类细胞,为方便起见,人们将这些细胞统称为形成层区(或形成层带)。
从形成层区的切向切面看,形成层原始细胞排列方式大体分为两种:一是在椴属(Tilia)和刺槐属(Robinia)等植物的形成层中,纺锤状原始细胞几乎排列在同一水平层,称为叠生形成层。一是纺锤状原始细胞的侵入生长,使纵向伸长的细胞末端相互交错,而不排列在同一水平层上,故称为非叠生形成层,如栗属(Castanea)和胡桃属(Juglans)等植物。
纺锤状原始细胞为适应茎或根的径向增粗,本身也进行细胞分裂,以增加原始细胞的数目,这种分裂特称为增殖分裂。在不同的植物中,增殖分裂的方式也不一样,如在具叠生形成层的植物中,多以径向垂周分裂为主,而在非叠生形成层的松柏类和某些双子叶植物中,常见为假横向分裂,或称斜向垂周分裂。从纺锤状原始细胞经分裂形成射线原始细胞,这是一种普遍现象。射线原始细胞本身也进行横向或垂周分裂,最后形成单列或多列射线。
在温带地区生长的木本植物,随着季节性的气候变化,也明显地反映在形成层的周期活动上。冬季形成层原始细胞停止分化,翌年春季又开始恢复活动,到了夏秋逐渐减弱,而后停止活动。如此周而复始,年复一年。当形成层原始细胞恢复活动时,可分为两个阶段:(1)形成层原始细胞径向伸展,径向壁变得很薄,这时易受霜冻的伤害。(2)原始细胞开始分裂,这一阶段往往比前阶段晚1至数星期。生长在北京地区的树种,形成层开始活动的时间,大体在每年四月的上、中旬。在大多数树种中,当形成层开始分化时,韧皮部分子的分化往往先于木质部达一个月或更长,或两者几乎同时分化。形成层分化停止的时间,在不同生境和树种中均有很大变化,生长在北温带地区的树木,多集中在九月份。
春季,形成层恢复活动时,纺锤状原始细胞迅速向内分裂的分化成大量的木质部分子,此时分化的管胞或导管分子的直径较大,数目多,壁较薄,木纤维数量较少,因此材质显得比较疏松,这部分木材称为早材(或叫春材)。到了同年夏秋季节,形成层的活动逐渐减弱,原始细胞平周分裂的速度也相应的减慢,分化的细胞直径较小,数量少,而木纤维的数量相应增多,这部分的材质比较致密,称晚材(或称夏材)。在双子叶植物的环孔材(如栎树和白蜡树)中,早材部分的导管分子直径明显增大,而晚材的导管分子相当小。散孔材与裸子植物木材中,由早材至晚材的变化,一般是逐渐进行的,即没有显著界线。不过在上一个生长季的晚材与下一个生长季的早材之间却存在着明显的界线。从根与茎的木材横断面上看,这些界线成了一圈圈同心圆的环纹,每一个包括早材和晚材两部分的圆环,称为生长轮(或称生长层)。生长在温带地区的木本植物,通常一年内只形成一个生长轮,特称年轮。
它代表着一年内所形成的次生木质部的数量。在一株树中,年轮的数目由树干基部往上逐渐减少。
有时在一个生长季中可能出现两个或多个生长轮,即双轮或复轮。如柑桔属(Citrus)茎中的形成层每年有三次活动高峰,因此一年能产生三个年轮。有些植物由于受到气候的骤变,如变冷或转热,或长期干旱或虫害,以及强台风的侵袭等特殊自然灾害的影响,也会出现多年轮的现象。有人将一年内形成几个生长轮中最后一轮,称为真正年轮,其余各轮统称假年轮或伪年轮。在有的生长季中若遇着霜冻,特别是晚期霜害,易使形成层原始细胞受到损伤,结果产生含有不规则的薄壁组织带,即称创伤年轮或霜轮。也有的树木,因反常的气候影响,使形成层不分化,直到生长环境适合时才又开始活动,形成年轮,这样在木材横切面上就会相应的出现缺失生长轮的现象。如在半干旱森林边缘的树木,或者在某些老树树干基部的木材常有缺失生长轮的情况。
生长在热带或亚热带地区的木本植物,如桉树等,由于一年内无明显的四季之分,形成层的活动几乎整年不停,这样在木材中就难以看出生长轮或年轮的分界线。不过也有些树种的木材,可借助于显微化学的方法来辨认生长轮的界线。
在同一生长季中,形成层的原始细胞除向内产生大量次生木质部分子以外,同时还向外分裂分化为次生韧皮部分子,这些分子也按一定的排列图式进行。尤其在形成层区附近的次生韧皮部中,根据韧皮薄壁组织或厚壁组织的的次生韧皮部中,由于某些细胞体积的扩展,或有的细胞被挤压变形,以及周皮的形成等原因,致使这部分的生长轮界线模糊不清。关于次生韧皮部,或形成层以外树皮部分中生长轮或年轮的情况。
在木材年轮的形成过程中,许多内因和外因对其影响很大。例如在双子叶植物的散孔材树种中,当芽萌动以前,整个植株的形成层原始细胞内均无内源激素存在,只有在芽萌发后才产生生长素,这时形成层就开始活动于萌发芽的下侧。随着生长素向下移动,形成层的活动也逐渐向茎基部扩展。一般在叶片长到成熟时的一半大小时,茎基部的形成层刚刚苏醒,但在一年生枝里,新的木质部分子却早已分化出来,有的甚至细胞壁也已木质化了。由树干顶端到基部,形成层活动的间隔有时可达8—10星期之久。相反,在环孔材中,形成层在整株各部位几乎同时开始活动,由此可以推测,生长素的前体可能早就遍布形成层原始细胞内,一旦芽膨大后,生长素的前体即转变为促使形成层原始细胞分裂的生长素。在大多数树种中,新木质部分子的分化时间,均在叶子展开后的第3天至18天。此外植物体内的赤霉素和细胞分裂素等内源激素,对于形成层原始细胞的分裂、分化,木质部分子细胞壁的加厚,以及早材至晚材的过渡等都有密切关系。
除内源激素外,光合作用的产物碳水化合物也是影响年轮形成的因素之一。例如晚材中细胞壁显著加厚,则与碳水化合物的供应增多有着密切的关系。
在影响年轮形成的外因中,有光照、气温、降雨量及矿质营养的供应等因素。如生长在长日照(光周期为18小时)的洋槐,不论气温高低,均产生大量早材分子。若在短日照(光周期为8小时)的条件下,则只产生少量直径较小的导管或无导管。在松柏类植物中,木材管胞直径的变化往往也与日照长短有关。同时还和气温的高低有直接关系。在生长季中,如果遇到降雨量甚少或干热的外界因子,不仅影响树木的生长,而且还限制了形成层的活动,造成了狭窄的木材生长轮。有人比较了两棵生长在不同生境的北美云杉(Picea sitchensis),其中一棵长在干旱贫瘠的岩石缝中,其树龄为86年,而主干直径只有1.8厘米,年轮的平均宽度为0.1毫米。而另一棵生长在自然条件较好的地方,其若干年轮的平均宽度可达12毫米左右,两者竟相差一百多倍。
众所周知,生长在温带地区的木本植物中,茎干基部年轮的数目,往往能作为测定一棵树的年龄依据。年轮的宽窄不仅反映了树木的生长速度、材积的年生长量及材性的优劣等,而且也是衡量外界环境因子变化的重要指标。如在雨量充沛与温暖的气候条件下,树木生长迅速,年轮的距离也较宽;相反地在寒冷与干旱条件下,树木生长缓慢,年轮就显得较窄。树木年轮的宽窄真实地记载了各年的气候状况,故通过年轮的分析,可获得数百年乃至上千年的气候演变规律,这对预测未来气候的变迁,制定超长期气象预报等也是一种比较可靠的方法。如人们对西藏高原树木年轮的分析,初步了解到仅本世纪就有两次大的降温,目前该地区的气温正在明显回升;在本世纪20年代前后,降雨量也达到高峰,以后显著下降,目前又稍有增加。通过对年轮的分析还可以得出气候变化的一般规律,大约二百年为一周期,其次还有110年、92年、72年以及33年的小周期变化。
树木年轮的宽窄看来还受到太阳黑子周期活动的影响,这是由于当太阳黑子增多时,太阳的活动剧烈增强,发射出的光与热也更多,从而大大促进了树木的生长加快,相应年轮的距离也增宽。通过年轮的分析也可发现,太阳黑子活动的平均周期为11年左右。
在分析年轮时,往往采用交叉定年法,即取几棵树上的年轮序列加以对比,并把一些特宽或特窄的年轮作为标记点,分析几组年轮序列的同步性,这样就可排除假年轮,或补进缺失的年轮,最后获得每个年轮的正确生成年代。
树木的年轮还是大气污染的资料储存库。例如由开采金属矿藏,或金属冶炼加工中飞扬出来的重金属尘埃,逐渐沉降到附近的土壤中,树木在生长过程中,不断从土壤中吸进大量重金属,结果通过光谱分析,便可测出年轮中“记录”下来的各年吸收重金属的含量。当氟化氢气体的污染侵害松树只有几星期,从年轮上即可表现出生长不良的痕迹来。因此,近年来,利用树木年轮来了解大气污染的情况也开始受到人们的关注。
从树桩横断面上的年轮往往可以帮助辨明方向。因为在树木生长过程中。树干朝南一面受阳光照射较多,形成层原始细胞分裂也较迅速,径向生长加快,结果茎干南面的年轮也较宽。而在茎干背阴朝北的一面,年轮则明显狭窄。
年轮的运用
运用年轮的研究成果开始于本世纪初,这位学者是道格拉斯,他1867年出生于美国佛蒙特,后来到亚利桑那州建立起一个新气象站。1901年他开始到弗拉格斯塔夫附近一些伐木营地,考察那里新伐树木的年轮型式,想找出证据说明这些年轮中记录了以11年为周期的太阳黑子活动。他没有立即找到证据,但他注意到,一个地区和另一个地区的年轮型式似乎一无二致。例如,一个伐木营地新伐的树木,里面是两道薄薄的年轮,外面是三道厚厚的年轮,其他营地新伐的树木也是这样。人们可以推断,这种型式表明,两年是坏天气,三年是好天气。道格拉斯注意到,他发现的这种型式的年轮似乎在亚利桑那州北部到处皆有。
在本世纪的头20年中,道格拉斯继续研究年轮的型式。事实上,通过识别年轮来测定古老建筑的年代是道格拉斯的创举。美国西南部印第安人村庄的废墟,长期以来引起考古学家的兴趣。那些村庄原由工匠精心建造,其中有许多房屋显然已经使用了好多世纪,可是后来不知何故,那些村庄都废弃了。据估计,那些村庄早在公元前2000年就已存在。道格拉斯从1916年起开始考察印第安村庄废墟残留的木料,研究其年轮以确定其年化。到1929年,他终于制成一个“浮动”年表。
有文明传统的地方,在使用年轮方面可能出人意料,令人惊讶。比如说,在中世纪俄国的诺夫哥罗德,街上泥泞不堪,市民就往路面铺原木。一层陷进泥里就再铺一层,到现在至少有28条街已经堆满了一层又一层的原木,这些原木的年代从公元953年起一直到1462年,真是年轮博览会。又如,像伦勃朗和鲁本斯等艺术大师的油画,分析其橡木油画板上的年轮型式就可知作画的年代。
19世纪90年代,美国科学家道格拉斯创立了一个新的科学领域——树木年代学。树木年代学是一门把年轮当作过去气象类型标准的尺度来研究的科学。从树桩、木块及活树上可以看出年轮的宽窄。树木每年的生长在很大程度上取决于土壤的湿度:水分越充分,年轮越宽。通过对同一地区树木年轮的比较,可以分辨出每圈年轮的生长年代。然后,可以划分出每圈年轮所代
表的确切日期,如一次森林大火,一次滑坡事件的日期等。
上面所说的年轮应用,一般说来都属于年轮学的范围。现在这个学科的热门主题是从年轮中测出过去的气象以及气象的重大变化。
这项工作要比测定年代复杂得多,因为它取决于在不同年代生长的年轮之间的不同宽度。由于树之间和年轮之间都有其固有的变异性,我们可以说这棵树比另一棵树老5年,但难以断定年轮之间不同宽度的确切数字。
现代年轮学可以说起源于60年代生物学家弗里茨在亚利桑那大学的研究工作。弗里茨和他的同事仔细考察了塔克森附近一些树的生长过程,他们给树枝乃至整棵树都套上了塑料膜,以断定一棵树究竟摄取和放出了多少各种各样的气体。经过10个寒暑的工作,他们终于详尽地了解了一环年轮生长的全部过程。
年轮的生长并不像乍看起来那么简单。比如说,如果去年是树生长的大好年头,那么,树根伸展的范围会超过往年,这一年整个树的生长也会超过往年。同样,一个坏年头会使以后几年的生长速度减慢,而不管以后几年的气候如何。把树受到的各种影响分析出来是一项艰巨的任务,但是这项任务一旦完成,其成果就像年表一样有广泛的用途。
年轮与地理的关系
我们把美国西南部周围年轮的数据收集起来,同100年来的气象记录进行比较,就会看出年轮如何反映出气候。因此,对于没有气象记录的时期,我们从一环年轮形成的情况可以推断出当时的气候。弗里茨就这样把美国西部和太平洋北部的气象图编制到大约公元1600年。
年轮专家还研究了酸雨对美国东部森林的影响。哥伦比亚大学的戈登·雅各比解释说,随着树越长越老,年轮也变得越来越薄。这是正常的老化过程。因而可以得出结论:酸雨对树起着相反的作用。我们还必须比较气象数据以排除树生长减慢的其他可能原因。要证实酸雨的影响,必须找出正常条件以外的生长受阻情况。雅各比在新英格兰州周围的12个圈定地区中看到有3个地区受酸雨影响,其余9个地区没有受酸雨影响。
然而,在某些情况下,年轮也可以用来非常惊人地证明环境污染的影响。例如,亚利桑那大学一个研究小组发现,加拿大不列颠哥伦比亚省特莱尔一家铅矿冶炼厂对美国华盛顿州的树木生长发生了影响。那家工厂开工时,树木生长比正常情况相差很多。但是几年后工厂关门,树木生长情况恢复正常了。
年轮还记录了火山爆发。像圣海伦斯火山爆发时,大量灰尘和气体进入同温层,遮住大片阳光。这会使温度降到冰点以下,给树内留下一道叫做霜轮的特殊标记。亚利桑那大学的瓦摩尔·拉马舍及其同事们不久前研究了刺果松上的霜轮,发现其中有不少符合大火山爆发的情况。东印度群岛坦波拉火山爆发曾使1816年成了“没有夏天的一年”,那次火山爆发不仅给刺果松留下了霜轮,而且在南非的树上也发现有这种霜轮。公元前1626年出现了特别突出的霜轮,拉马舍认为这些霜轮可能是一次火山爆发造成的,那次火山爆发使爱琴海的桑托林岛一度消失。神秘的大西洲沉沦海中的故事,也可能是起源于那次火山爆发。拉马舍提出的年代,虽然有些考古学家还有争议,但它是迄今最确切的年代。用碳14法对那次火山爆发覆盖的工艺品测定的年代,与拉马舍提出的年代也一致。
年轮科学家开始认真研究的另一种短暂现象是地震。地震可以给树造成损害,使树在以后的一些年中产生较薄的年轮。哥伦比亚大学的戈登·雅各比让我看了一棵松树的树心横切面,它的薄年轮长得不规则,而且挤在一起,但以前它一直长得很好。1857年一次大地震震撼了加利福尼亚州南部的旷野,那棵树正好长在那儿。这样,那棵树就可以告诉我们,那段断层是什么时候处于活动时期的。
人们关心的另一个大问题就是:由于几世纪以来不断燃烧煤和石油,大气层中二氧化碳大量蓄积,从而造成未来的地球气温升高。年轮气象关系学国际计划的数据将扩展到公元1700年,这个年代比开始燃烧煤和石油的产业革命时期还要早得多。拉马舍说:“没有这种数据基础,大气层科学家要想确切地知道渐暖趋势,恐怕还要用10年到20年的时间去观察气温和二氧化碳。到那时,恐怕为时过晚了。”
树木无事不知,无所不晓。
如果我们不愚蠢,我们可以让树木的记忆向我们提供各种各样有用的知识,使我们既可通晓过去,也可预卜未来。
西府海棠和大叶海棠区别
大叶海棠落叶灌木,枝干丛生。小枝平滑,无毛。叶卵形或椭圆形,叶缘有不规则锐齿,长3.9cm,先端渐尖,表面无毛,有光泽。花3-5朵簇生,花梗短粗或近无梗,猩红 色、朱红色、桔红色、粉红色、或白色,花期3-5月。果卵形至球形,黄色或黄绿色,芳香。
西府海棠
小乔木,高达2.5-5米,树枝直立性强;小枝细弱圆柱形,嫩时被短柔毛,老时脱落,紫红色或暗褐色,具稀疏皮孔;冬芽卵形,先端急尖,无毛或仅边缘有绒毛,暗紫色。叶片长椭圆形或椭圆形,长5-10厘米,宽2.5-5厘米,先端急尖或渐尖,基部楔形稀近圆形,边缘有尖锐锯齿,嫩叶被短柔毛,下面较密,老时脱落;叶柄长2-3.5厘米;托叶膜质,线状披针形,先端渐尖,边缘有疏生腺齿,近于无毛,早落。
伞形总状花序,有花4-7朵,集生于小枝顶端,花梗长2-3厘米,嫩时被长柔毛,逐渐脱落;苞片膜质,线状披针形,早落;花直径约4厘米;萼筒外面密被白色长绒毛;萼片三角卵形,三角披针形至长卵形,先端急尖或渐尖,全缘,长5-8毫米,内面被白色绒毛,外面较稀疏,萼片与萼筒等长或稍长;花瓣近圆形或长椭圆形,长约1.5厘米,基部有短爪,粉红色;雄蕊约20,花丝长短不等,比花瓣稍短;花柱5,基部具绒毛,约与雄蕊等长。果实近球形,直径1-1.5厘米,红色,萼洼梗洼均下陷,萼片多数脱落,少数宿存。花期4-5月,果期8-9月。
北美海棠品种有哪些
品种有:
'北美之王'海棠 Malus 'America King'
'艾丽'海棠 Malus 'Eleyi'
'宝石'海棠 Malus 'Jewelberry'
'草莓果冻'海棠 Malus 'Strawberry Parfait'
'草原之火'海棠 Malus 'Prairifire'
'道格'海棠 Malus 'Dolgo'
''红丽'海棠 Malus 'Red Splender'
''红哨兵'海棠 Malus 'Red Sentinel'
'红玉'海棠 Malus 'Red Jade'
'火焰'海棠 Malus 'Flame'
'霍巴'海棠 Malus 'Hope'
'金峰'海棠 Malus 'Golden Hornet'
'凯尔斯'海棠 Malus 'Kelsey'
''罗宾逊'海棠 Malus 'Robinson'
''王族'海棠 Malus 'Royalty'
'绚丽'海棠 Malus 'Radiant'
'雪球'海棠 Malus 'Snowdrift'
'亚当'海棠 Malus 'Adams'
'印第安魔力'海棠 Malus 'Indian Magic'
'钻石'海棠 Malus 'Sparkler'
'珠穆朗玛'海棠 Malus 'Qomolangma'
'琥珀'海棠 Malus 'Amber'
'西伯利亚红色'海棠 Malus 'siberian red'
"红巴伦"海棠Malus'Red Barron'
北美海棠在美国和加拿大的园林景观植物名录中可以见到的海棠栽培种有多个,从植物学角度来说,其原种多来自亚洲,少量出自当地。由于北美园林中应用的很多著名品种是由美国和加拿大的苗圃和植物研究人从自然杂交的海棠中选育出来的,在北美已经流行并应用了几十年以上,所以被称之为北美海棠。
北美海棠都有哪些品种?
北美海棠花期为4月上旬,花色红艳夺目,花型美丽动人,是有名的观赏性植物。在5~6月间长出色彩艳丽的新叶,7~8月海棠果挂满整树,并且一直挂果到翌年春天,是不可多得的集观花、观叶、观果植物。
北美海棠品种较多:有凯尔斯海棠、王族海棠、绚丽海棠、红宝石海棠等等。
一、凯尔斯海棠枝条斜展,新叶鲜红色,又是独特的重瓣品种,花量大,花密集,但果实早落。
二、王族海棠果实球形,黑红色,表面被霜状蜡质。果萼宿存,为美国海棠系列品种之一,是一个集红叶、红花、红果为一体的优秀品种。
三、绚丽海棠果实富有特色,6月就红艳如火,灯笼形果实,成熟期早,且萼片宿存,结果丰富,挂果期可长达数月,直到隆冬。
四、红宝石海棠是一个叶、花、果、枝与树形同观共赏的绿化、彩化名贵树种。具有“叶红、花红、果红、枝亦红”的特点,花、果、枝干、叶在生长期中均表现出红宝石颜色。
秋海棠有哪些常见栽培品种?
(1)四季秋海棠。叶色光亮,花朵成簇,四季开放。园艺品种有高型种和矮型种;花有单瓣及重瓣;花色有红、白、粉红及中间色;叶有绿、紫红及深褐等色。(2)球根海棠。花大而色艳,居秋海棠之首。花色有白、淡红、鲜红、橙红、黄等色,花期6~9月。有单瓣、半重瓣和重瓣。(3)蟆叶秋海棠。叶形似象耳,叶大而色彩丰富,四季如新,园艺品种常见的有红叶、灰叶、粉叶和紫叶等。(4)莲叶秋海棠。叶近圆形似莲叶,表面暗绿色,有光亮,背面红色。花淡红色。(5)枫叶秋海棠。叶大似枫叶,表面暗绿色,有彩纹,背面红褐色。花小,白色带红晕。(6)银星秋海棠。叶片椭圆形至长卵圆形,叶面绿色,其上密生许多银白色小斑点,叶背有红晕。花粉红色,盛花期7~8月。(7)竹节秋海棠。叶为极斜的长椭圆形、具长尖、质厚,叶面绿色,有多数白色小斑点,叶背面紫红色。花小,粉红或鲜红色,花序下垂。夏、秋季开花,花期较长。(8)红筋秋海棠。叶卵圆状心脏形,叶面浅绿带红晕,叶背红色。聚伞花序,花粉红色,花期4~12月。(9)缨络秋海棠。叶面黄绿色,有银灰色白斑。花形大,长约5厘米,每个花序着花10余朵,鲜红色,花期8~10月。(10)撒金秋海棠。叶面黄绿色,有金属光泽,叶脉红色。花粉红色,花期7~9月。
红宝石海棠与王族海棠有什么区别
红宝石海棠:叶红、花红、果红、枝亦红,春季红色的枝条发芽后,其嫩芽嫩叶血红,开出花朵粉红色,坐果后鲜红的果实挂满全树;秋季成熟的果实紫红、酸甜适口;冬季,鲜红的枝条令人耳目一新
王族海棠:花、叶、果甚至枝干均为紫红色,呈深玫瑰红色,高贵典雅。
北美海棠是一个产品系列的统称。记得2004年前后,我们这里好多人都在热论什么翡翠海棠,珍珠海棠,绚丽海棠,红宝石海棠等,虽然每个海棠品种的名字人们都能说的滚瓜溜熟,但当时大部人还不知道其实这些品种都属于北美海棠系列。其实北美海棠不是一个产品名称,而是好多海棠品种的一个综合的称呼。
上一篇:光环1
下一篇:没有了